Меню Рубрики

Анализ крови с помощью микроскопа

Станислав Яблоков, Ярославский государственный университет им. П. Г. Демидова

Театр начинается с вешалки, а микросъёмка с покупки оборудования, и прежде всего — микроскопа. Одна из основных его характеристик — набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива.

Не всякий биологический образец хорош для просмотра при большом увеличении. Связано это с тем, что чем больше увеличение оптической системы, тем меньше глубина резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения с увеличением от 10—20 до 900—1000×. Иногда бывает оправданно добиться увеличения 1500× (окуляр 15 и объектив 100×). Большее увеличение бессмысленно, так как более мелкие детали не позволяет видеть волновая природа света.

Следующий немаловажный момент — тип окуляра. «Сколькими глазами» вы хотите рассматривать изображение? Обычно выделяют монокулярную, бинокулярную и тринокулярную его разновидности. В случае монокуляра придётся щуриться, утомляя глаз при длительном наблюдении. В бинокуляр смотрят обоими глазами (не следует путать его со стереомикроскопом, дающим объёмное изображение). Для фото- и видеосъёмки микрообъектов понадобится «третий глаз» — насадка для установки аппаратуры. Многие производители выпускают специальные камеры для своих моделей микроскопов, но можно использовать и обычный фотоаппарат, купив к нему переходник.

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры объективов. Световой пучок от осветителя, преобразованный в оптическом устройстве — конденсоре, освещает препарат. В зависимости от характера освещения существует несколько способов наблюдения, самые распространённые из которых — методы светлого и тёмного поля. В первом, самом простом, знакомом многим ещё со школы, препарат освещают равномерно снизу. При этом через оптически прозрачные детали препарата свет распространяется в объектив, а в непрозрачных он поглощается и рассеивается. На белом фоне получается тёмное изображение, отсюда и название метода. С тёмнопольным конденсором всё иначе. Световой пучок, выходящий из него, имеет форму конуса, лучи в объектив не попадают, а рассеиваются на непрозрачном препарате, в том числе и в направлении объектива. В итоге на тёмном фоне виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных малоконтрастных объектов. Поэтому, если вы планируете расширить набор методов наблюдения, стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсора тёмного поля, тёмнопольной диафрагмы, устройств фазового контраста, поляризаторов и т.п.

Оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения — аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы для профессиональных исследований. Сильные объективы (с увеличением, например, 100×) имеют числовую апертуру больше 1 при использовании иммерсии, масла с высоким показателем преломления, раствора глицерина (для УФ-области) или просто воды. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионной жидкости. Её показатель преломления обязательно должен соответствовать конкретному объективу.

Иногда следует обратить внимание на устройство предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который ярче и греется меньше. Микроскопы тоже имеют индивидуальные особенности. Каждая дополнительная опция — это добавка в цене, поэтому выбор модели и комплектации остаётся за потребителем.

Сегодня нередко покупают недорогие микроскопы для детей, монокуляры с небольшим набором объективов и скромными параметрами. Они могут послужить хорошей отправной точкой не только для исследования микромира, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже стоит купить более серьёзное устройство.

Можно купить далеко не дешёвые наборы готовых препаратов, но тогда не таким ярким будет ощущение личного участия в исследовании, да и наскучат они рано или поздно. Поэтому следует позаботиться и об объектах для наблюдения, и о доступных средствах для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект достаточно тонок. Даже кожура ягоды или фрукта слишком толста, поэтому в микроскопии исследуют срезы. В домашних условиях их делают обычными бритвенными лезвиями. Чтобы не смять кожуру, её помещают между кусочками пробки или заливают парафином. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, а в идеале следует работать с моноклеточным слоем ткани — несколько слоёв клеток создают нечёткое сумбурное изображение.

Исследуемый препарат помещают на предметное стекло и в случае необходимости закрывают покровным. Купить стёкла можно в магазине медицинской техники. Если препарат плохо прилегает к стеклу, его фиксируют, слегка смачивая водой, иммерсионным маслом или глицерином. Не всякий препарат сразу открывает свою структуру, иногда ему нужно «помочь», подкрасив его форменные элементы: ядра, цитоплазму, органеллы. Неплохими красителями служат йод и «зелёнка». Йод достаточно универсальный краситель, им можно окрашивать широкий спектр биологических препаратов.

При выезде на природу следует запастись баночками для набора воды из ближайшего водоёма и маленькими пакетиками для листьев, высохших остатков насекомых и т.п.

Микроскоп приобретён, инструменты закуплены — пора начинать. И начать следует с самого доступного — например, кожуры репчатого лука. Тонкая сама по себе, подкрашенная йодом, она обнаруживает в своём строении чётко различимые клеточные ядра. Этот опыт, хорошо знакомый со школы, и стоит провести первым. Луковую кожуру нужно залить йодом на 10—15 минут, после чего промыть под струёй воды.

Кроме того, йод можно использовать для окраски картофеля. Срез необходимо сделать как можно более тонким. Буквально 5—10 минут его пребывания в йоде проявят пласты крахмала, который окрасится в синий цвет.

На балконах часто скапливается большое количество трупиков летающих насекомых. Не торопитесь от них избавляться: они могут послужить ценным материалом для исследования. Как видно из фотографий, вы обнаружите, что на крыльях насекомых есть волоски, которые защищают их от намокания. Большое поверхностное натяжение воды не позволяет капле «провалиться» сквозь волоски и коснуться крыла.

Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На снимках отчётливо видно, что это не пыль, а чешуйки с крыльев. Они имеют разную форму и довольно легко отрываются.

Кроме того, с помощью микроскопа можно изучить строение конечностей насекомых и пауков, рассмотреть, например, хитиновые плёнки на спине таракана. И при должном увеличении убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Не менее интересный объект для наблюдения — кожура ягод и фруктов. Однако либо её клеточное строение может быть неразличимым, либо её толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем получится хороший препарат: перебрать разные сорта винограда, чтобы найти тот, у которого красящие вещества кожуры имели бы интересную форму, или сделать несколько срезов кожицы сливы, добиваясь моноклеточного слоя. В любом случае вознаграждение за проделанную работу будет достойным.

Ещё более доступны для исследования трава, водоросли, листья. Но, несмотря на повсеместную распространённость, выбрать и приготовить из них хороший препарат бывает непросто. Самое интересное в зелени — это, пожалуй, хлоропласты. Поэтому срез должен быть исключительно тонким.

Приемлемой толщиной нередко обладают зелёные водоросли, встречающиеся в любых открытых водоёмах. Там же можно найти плавучие водоросли и микроскопических водных обитателей — мальков улитки, дафний, амёб, циклопов и туфелек. Маленький детёныш улитки, оптически прозрачный, позволяет разглядеть у себя биение сердца.

После изучения простых и доступных препаратов захочется усложнить технику наблюдения и расширить класс исследуемых объектов. Для этого понадобится и специальная литература, и специализированные средства, свои для каждого типа объектов, но всё-таки обладающие некоторой универсальностью. Например, метод окраски по Граму, когда разные виды бактерий начинают различаться по цвету, можно применить и для других, не бактериальных, клеток. Близок к нему и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из его компонентов — азура и эозина. Их можно купить в специализированных магазинах либо заказать в интернете. Если раздобыть краситель не удастся, можно попросить у лаборанта, делающего вам анализ крови в поликлинике, стёклышко с окрашенным её мазком.

Продолжая тему исследования крови, следует упомянуть камеру Горяева — устройство для подсчёта количества клеток крови и оценки их размеров. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить деньги. Это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Находятся и те, кто отводит свой взор от экранов и направляет его далеко в космос, приобретая телескоп. Микроскопия может стать интересным хобби, а для кого-то даже и искусством, средством самовыражения. Глядя в окуляр микроскопа, проникают глубоко внутрь той природы, часть которой мы сами.

«Наука и жизнь» о микросъёмке:

Микроскоп «Аналит» — 1987, № 1.

Ошанин С. Л. С микроскопом у пруда. — 1988, № 8.

Ошанин С. Л. Невидимая миру жизнь. — 1989, № 6.

Апертура — действующее отверстие оптической системы, определяемое размерами зеркал, линз, диафрагм и других деталей. Угол α между крайними лучами конического светового пучка называется угловой апертурой. Числовая апертура А = n sin(α/2), где n — показатель преломления среды, в которой находится объект наблюдения. Разрешающая способность прибора пропорциональна А, освещённость изображения А 2 . Чтобы увеличить апертуру, применяют иммерсию.

Иммерсия — прозрачная жидкость с показателем преломления n > 1. В неё погружают препарат и объектив микроскопа, увеличивая его апертуру и тем самым повышая разрешающую способность.

Планахроматический объектив — объектив с исправленной хроматической аберрацией, который создаёт плоское изображение по всему полю. Обычные ахроматы и апохроматы (аберрации исправлены для двух и для трёх цветов соответственно) дают криволинейное поле, которое исправить невозможно.

Фазовый контраст — метод микроскопических исследований, основанный на изменении фазы световой волны, прошедшей сквозь прозрачный препарат. Фаза колебания не видна простым глазом, поэтому специальная оптика — конденсор и объектив — превращает разность фаз в негативное или позитивное изображение.

Моноциты — одна из форм белых клеток крови.

Хлоропласты — зелёные органеллы растительных клеток, отвечающие за фотосинтез.

Эозинофилы — клетки крови, играющие защитную роль при аллергических реакциях.

источник

Каждый человек знает, что для выявления заболеваний организма проводится исследование сыворотки крови, и каждый хотя бы несколько раз в жизни проходил эту процедуру. Все привыкли, что лаборант осуществляет забор крови из пальца или из вены (это зависит от вида исследования крови), а через некоторое время у врача на столе лежит бланк с результатами. Но мало кто интересовался, как делают анализ крови: с помощью каких инструментов, приборов, реактивов.

В настоящее время для получения быстрых и точных результатов исследования крови используют гематологические анализаторы. Это приборы, с помощью которых можно сделать анализ крови за несколько минут. В соответствующий отсек прибора лаборант помещает пробирку с кровью, а через некоторое время прибор распечатывает бланк с результатами анализа. Существуют анализаторы, которые могут за один час исследовать более 70 проб крови и проанализировать их по 20 параметрам. Но, к сожалению, в нашей стране гематологические анализаторы находятся только в частных лабораториях или больших медицинских центрах. В обычных клинических лабораториях при районных поликлиниках на вопрос: «Как делают анализ крови?» лаборанты отвечают: «По старинке, с помощью микроскопа».

В большинстве лабораторий, которые финансируются из государственного бюджета, сделать анализ крови можно только с помощью микроскопа. При подготовке к данному виду исследования каплю крови помещают на край предметного стекла, а затем другим стеклом «размазывают» по его поверхности. Потом мазок окрашивается специальным красителем и изучается под микроскопом. Лаборант самостоятельно подсчитывает, сколько и каких клеток находится в биоматериале и заносит эти данные в бланк направления на анализ крови.

Экспресс анализ крови проводится двумя методами: с помощью специальных приборов – биохимических анализаторов (например, глюкометр) или с помощью тест-полосок. Оба эти метода исследования узконаправленные – они позволяют быстро оценить только один параметр крови (например, уровень холестерина или глюкозы). Есть биохимические анализаторы, которые могут сделать анализ крови по нескольким параметрам, но для этого надо в приборе заменять тест-полоски, так как для каждого вида анализа используются свои реагенты.

Давайте рассмотрим, как делается анализ крови с помощью тест-полосок. Тест-полоски обычно делаются из плотной бумаги, на часть полоски наносятся реагенты, которые должны провзаимодействовать с кровью и изменить свой цвет. В зависимости от того, насколько изменился цвет реагента, делается вывод о том, насколько показатель отличается от нормы.

Каждый из вышеперечисленных методов анализа крови имеет свои достоинства и недостатки. Даже самый лучший гематологический анализатор не сможет отличить сегментоядерные нейтрофилы от палочкоядерных, а это важно при диагностировании инфекционных заболеваний. А вот лаборант с микроскопом сделает это без труда.

В свою очередь, недостаток микроскопического анализа крови в том, что он долговременный и трудоёмкий. Да и человеческий фактор присутствует, лаборант тоже может ошибиться.

В случае экспресс анализа крови есть вероятность, что тест-полоски хранились с нарушением норм, и результат может быть недостоверным. Поэтому, если результат сильно отличается от нормы, то лучше сдайте обыкновенный анализ крови с пальца, чтобы подтвердить его или опровергнуть.

Читайте также:  Анализ крови папы для роддома

Независимо от того, как делают анализ крови: с помощью гематологического анализатора, «вручную» с помощью микроскопа или используя тест-полоски, важно понимать, что ни один результат не будет правильным на 100%. И в случае каких-либо сомнений в достоверности результата лучше пересдать анализ ещё раз.

Продолжительность анализа крови зависит от того, какой метод анализа применяется и какие именно показатели исследуются. Быстрее всего анализ крови проводится с помощью гематологического анализатора и тест-полосок, всего несколько минут. А дольше всего проводится анализ крови на бактериологический посев, он может занять несколько дней.

От того, сколько делают анализ крови, иногда зависит жизнь пациента, поэтому будем надеяться, что современные технологии придут в каждую районную клиническую лабораторию.

источник

Гемосканирование можно считать венцом творения мошеннической мысли, шедевром и высшим пилотажем околомедицинского шарлатанства. Во-первых, используется реально существующее физическое явление (про Нобелевку помните?) и самая настоящая сложная медицинская аппаратура. И действительно дорогостоящая. Стоимость диагностического комплекса обходится не менее чем в 3−4 тысячи долларов, и продают его солидные поставщики серьезной медицинской техники. Аппаратура имеет все необходимые — подлинные и совершенно заслуженные — сертификаты и свидетельства. Во-вторых, никаких проблем с лицензированием. Лабораторная диагностика — вполне законный вид медицинской деятельности, а микроскоп, позволяющий осуществлять фазово-контрастное или темнопольное микроскопирование, — вполне законная медицинская диагностическая аппаратура. Мало того, она широко применяется в медицине, то есть существуют сертифицированные и дипломированные специалисты. В-третьих, действительно под микроскопом можно обнаружить массу признаков тех или иных заболеваний. Например, изменение формы эритроцитов при серповидноклеточной анемии. А еще можно увидеть внутриклеточных паразитов все в тех же эритроцитах, бартонеллами называются. И даже яйца гельминтов в крови теоретически обнаружить можно.
Арба вижу — арба пою

Так в чем же подвох? В интерпретации. В том, как объясняют «темнопольщики» те или иные изменения в крови, как называют обнаруженные артефакты, какие диагнозы ставят и чем лечат. Разобраться в том, что это обман, сложно даже врачу. Нужна специальная подготовка, опыт работы с образцами крови, сотни просмотренных «стекол» — как крашеных, так и «живых». Как в обычном поле, так и в темном. К счастью, у автора статьи такой опыт имеется, как имеется он и у тех экспертов, с которыми сверялись результаты расследования.

Правильно говорится — лучше один раз увидеть. И своим глазам человек поверит куда быстрее, чем всем устным увещеваниям. На это и рассчитывают «лаборанты». К микроскопу подсоединен монитор, который отображает все, что видно в мазке. Вот вы лично когда последний раз видели собственные эритроциты? Вот то-то и оно. Интересно ведь. А пока завороженный посетитель любуется клетками родной любимой крови, «лаборант» начинает интерпретировать то, что он видит. Причем делает это по принципу акына: «Арба вижу- арба пою». Про какую «арбу» могут напеть шарлатаны, подробно читайте во врезке.

После того как пациент будет напуган и сбит с толку непонятными, а иногда и откровенно страшными картинками, ему объявляют «диагнозы». Чаще всего много, и один кошмарнее другого. Например, расскажут, что плазма крови инфицирована грибками или бактериями. Неважно, что увидеть их даже при таком увеличении достаточно проблематично, а уж отличить друг от друга- тем более. Микробиологам приходится сеять возбудителей различных болезней на специальные питательные среды, чтобы потом можно было точно сказать, кто вырос, к каким антибиотикам чувствителен и т. д. Микроскопия в лабораторных исследованиях применяется, но либо со специфичными красителями, либо вообще с флуоресцирующими антителами, которые прикрепляются к бактериям и таким образом делают их видимыми.

Но даже если, чисто теоретически, в крови под микроскопом будет обнаружен такой гигант мира бактерий, как кишечная палочка (1−3 мкм длиной и 0,5−0,8 мкм шириной), это будет означать только одно: у пациента сепсис, заражение крови. И он должен лежать горизонтально с температурой под 40 и прочими признаками тяжелейшего состояния. Потому что в норме кровь стерильна. Это одна из основных биологических констант, которая проверяется достаточно просто- посевом крови на различные питательные среды.

А еще могут рассказать, что кровь «закислена». Смещение рН (кислотности) крови, называемое ацидозом, действительно встречается при многих заболеваниях. Вот только измерять кислотность на глаз пока никто не научился, нужен контакт датчика с исследуемой жидкостью. Могут обнаружить «шлаки» и рассказать про степени зашлакованности организма по данным ВОЗ (Всемирная организация здравоохранения). Но если поискать по документам на официальном сайте этой организации, то ни про шлаки, ни про степени зашлакованности там ни слова нет. Среди диагнозов могут встречаться синдром обезвоживания, синдром интоксикации, признаки ферментопатии, признаки дисбактериоза и масса других, не имеющих отношения либо к медицине, либо к данному конкретному больному.

Апофеоз диагностики, конечно же, назначение лечения. Оно, по странному стечению обстоятельств, будет проводиться биологически активными добавками к пище. Которые по сути и по закону лекарствами не являются и лечить не могут в принципе. Тем более такие страшные болезни, как грибковый сепсис. Но гемосканеров это не смущает. Ведь лечить они будут не человека, а те самые диагнозы, которые ему наставлены с потолка. И при повторной диагностике — будьте уверены — показатели улучшатся.
Что нельзя увидеть в микроскоп

Что бы вам ни говорили «специалисты», с помощью микроскопа в капле крови, взятой из пальца, нельзя увидеть pH крови; дефицит ферментов для расщепления белков; уровень водно-солевого обмена; пищевые мутагенные/тератогенные токсины; поражение эритроцитов почечными токсинами / свободными радикалами; паразитов, грибы, бактерии, яйца глистов, цисты; активность, количество и качество иммунных клеток.

Тестирование по «живой капле крови» зародилось в США в 1970-х годах. Постепенно медицинской общественности и регулирующим органам стала ясна истинная сущность и ценность методики. С 2005 года началась кампания по запрету этой диагностики как мошеннической и не имеющей отношения к медицине. «Пациента обманывают трижды. Первый раз- когда диагностируют болезнь, которой нет. Второй раз- когда назначают долгое и дорогостоящее лечение. И третий раз- когда подделывают повторное исследование, которое обязательно будет свидетельствовать либо об улучшении, либо о возврате к норме» (доктор Стивен Баррет, вице-президент Американского национального совета против медицинского мошенничества, научный консультант Американского совета по науке и здоровью).
Взятки гладки?

Доказать, что вас обманули, практически нереально. Во-первых, как уже говорилось, не всякий врач сможет заподозрить в методике подлог. Во-вторых, даже если пациент пойдет в обычный диагностический центр и у него там ничего не найдут, можно в крайнем случае свалить все на врача-оператора, проводившего диагностику. И действительно, визуальная оценка сложных изображений целиком и полностью зависит от квалификации и даже физического состояния того, что проводит оценку. То есть метод не является достоверным, поскольку напрямую зависит от человеческого фактора. В-третьих, всегда можно сослаться на некие тонкие материи, которые пациенту понять не дано. Это последний рубеж, на котором обычно насмерть стоят все околомедицинские мошенники.

Что же мы имеем в сухом остатке? Непрофессиональных лаборантов, которые выдают случайные артефакты (а может, и срежиссированные) в капле крови за страшные заболевания. И потом предлагают лечить их пищевыми добавками. Естественно, все это за деньги, и очень немаленькие.

Имеет ли данная методика диагностическую ценность? Имеет. Безусловно. Такую же, как и традиционная микроскопия мазка. Можно увидеть, например, серповидноклеточную анемию. Или перницитозную анемию. Или другие действительно серьезные заболевания. Только вот, к огромному сожалению мошенников, встречаются они редко. Да и не продашь таким пациентам толченый мел с аскорбинкой. Им нужно настоящее лечение.

источник

Как известно, вовремя и качественная диагностика – это львиная доля успеха в избавлении от болезни
Поэтому так важно выявить недуг на раннем этапе и своевременно принять меры
В современном мире существует множество видов исследования человеческого тела, однако, как показывает практика, они не очень эффективны, особенно, когда дело касается особенных детей

В последнее время очень много говорят и пишут о диагностике по капле крови
Гемосканирование крови (именно так называется данный вид обследования организма) – как говорят о нем его сторонники, это новейший метод диагностики, позволяющий «в прямом эфире» (буквально!) проникнуть в скрытый от нас мир наших клеток и узнать, что там творится
В каждой поликлинике проводится клинический анализ крови, к которому мы давно привыкли и который уже доказал свою неэффективность

Да, он может показать нам, каков уровень гемоглобина или холестерина в крови, как быстро соединяются наши эритроциты и т.д.
Однако он не отслеживает целый ряд нюансов, которые может разъяснить нам анализ гемосканирование
Врач-лаборант делает акцент на количестве форменных элементов в литре крови, а затем сравнивает его со средними нормами
Вот почему очень часто бывает так, что человек чувствует себя плохо, а анализ крови доказывает ему, что с организме все в порядке

А гемосканирование как раз и выявляет вот эти несоответствия, потому что оценивает качественное состояние крови, а не количественное
Качественное отличие гемосканирования от обычного анализа крови
Анализ крови исследует ее неживые клетки, гемосканирование работает с живым материалом – вы наблюдаете в микроскоп жизнь своей собственной клетки

Для того чтобы лаборант смог изучить кровь для анализа, она предварительно высушивается, при гемосканировании такого нет
В гемосканировании нет никаких дополнительных веществ (реактивов), искажающих клетки крови, а в анализе они необходимы для фиксации и окрашивания исследуемого материала
С помощью современного метода диагностики по капле крови вы можете видеть элементы крови в их статическом движении и получать оценку об их функциональных возможностях

Гемосканирование оценивает качество плазмы крови, наличие в ней солей ортофосфорной и мочевой кислот, кристалоидов сахара, нитей фибрина и проч., а также присутствие патогенных микроорганизмов (простейших, грибов, паразитов и их личинок, в том числе и внутриклеточных, бактерии)
С помощью данного вида диагностики специалисты способны классифицировать моноциты, макрофаги, базофилы, эозинофилы, сегментоядерные и палочкоядерные нейтрофилы
Кроме того, гемосканирование позволяет давать оценку состоянию иммунной системы, а также определять способность конкретного организма к самовосстановлению
Исследование по капле крови проводится в присутствии пациента, а, значит, он может видеть все своими глазами, быстро получить результат диагностики и соответствующие рекомендации по восстановлению организма

Этот метод представляет собой тестирование только что взятой из пальца пациента капли крови на темнопольном микроскопе, который увеличивает исследуемый материал в 1600 раз
Прибор подключен к видеокамере, и пациент с помощью монитора микроскопа своими глазами может наблюдать под комментарии специалиста, что происходит в его крови – видеть ее клетки, структуру, состав, а также все имеющиеся отклонения

На 1 этапе врач берет у пациента кровь, точнее, всего лишь одну ее каплю
Для того чтобы гемосканирование получилось объективным, важно воздержаться от употребления пищи за 2-3 часа до начала исследования

На 2 этапе врач и пациент рассматривают полученный биологический материал, специалист рассказывает о том, что сообщает ему кровь

3 этап – это обсуждение всех имеющихся отклонений и подбор рекомендаций для каждого конкретного пациента

Этот современный метод диагностики позволяет определить

Статус иммунитета
Наличие в крови кристаллов холестерина, мочевой кислоты, сахара
Напряжение в селезенке и в печени
Дефицит тех или иных питательных веществ в организме, а также степень насыщенности ими крови
Инфекции различной этимологии – грибковую, бактериальную, дрожжевую, в том числе и те, которые не смогли выявить другие анализы
Наличие паразитов
Гормональный дисбаланс
Степень обезвоженности организма
Степень закисленности организма
Качество внутренней среды организма
Состояние обменных процессов, предрасположенность к сахарному диабету
Неполадки в ЖКТ, наличие дисбактериоза
Склонность к различным тяжелым заболеваниям – раку, анемии, инсульту, инфаркту, атеросклерозу и др.
Наличие в организме тяжелых металлов, а также степень интоксикации
Несоответствие действительности ранее поставленных диагнозов

Конечно, любой, кто хочет знать, что происходит внутри него, может сделать гемосканирование
Оно помогает предотвратить надвигающуюся угрозу и избавиться от уже имеющихся заболеваний
Однако есть целый ряд недугов, степень тяжести которых обязательно следует проверить с помощью капли крови

Вам просто необходимо пройти гемосканирование, если у вас

Ухудшилось состояние здоровье, но врачи до сих пор не могут поставить диагноз или делают неясные выводы по поводу вашего заболевания
Есть субфебрильная температура
Проблемы с кожей (в том числе аллергические реакции, грибковые недуги, нейродермит, розацеа и др.)
Состояние хронической усталости
Болевые ощущения в суставах, мышечные боли
Проблемы с пищеварением – болевые ощущения в области живота, несварение пищи, гастрит, вздутие, ненормальный стул, различные хронические заболевания органов ЖКТ
Молочница и эрозия шейки матки
Болезни органов дыхания, стоматит
Плохая работа печени и желчевыводящих путей
Сбои в работе эндокринной системы

Вполне естественно, что при таком охвате недугов гемосканирование приобретает все большую популярность среди родителей особенных детей, которые тратят массу сил, времени и средств для того, чтобы выявить все перечисленные отклонения от нормы
Вот что говорят об исследовании по капле крови те, кто уже успел его пройти

Мы делали гемосканирование, нам поставили анемию, нарушение баланса электролитов и дискинезию ЖКТ
Но, конечно, они нам свои БАДы прописали коралловые
Я сначала противилась, но давать начала, и у сына пошел процесс детоксикации, болеть стал меньше, проще стало на прогулках, так как поведение улучшилось, стал понимать речь и пытаться говорить
Я читала, что кровь больного человека вязкая из-за токсинов, грибков и бактерий, а потому ее движение по сосудам затруднено
В результате, органы тела недополучают нужного количества крови
Гемосканирование вроде бы помогает установить, что не так с кровью
Это единственный анализ, который может быть полезен для врача – представителя нетрадиционной медицины, так как он отражает структуру крови, а, значит, показывает состояние эритроцитов и динамику положительных изменений в организме вследствие лечения

Читайте также:  Анализ крови при артралгии

Мама Катя из нашей программы прошла в Коралловом клубе гемосканирование

Сделали анализ по капле крови
Лена, он вообще действительно достоверный?
Эритроциты все склеенные и большими участками
Лейкоцитов мало
Незначительное закисление
Очень много грибов
Я пошла вообще туда за антипаразитарной программой, нам такое не назначили
Паразитов в крови не обнаружили
Холестерин есть неращеплённый
Сказал состояние плазмы у нас хорошее, но очень мало лейкоцитов и много грибов
Я так понимала что с кровью беда у нас
И с грибами тоже
Назначили свою воду пить

Если бы все было так радужно, как расписывают нам сторонники гемосканирования, то, пожалуй, необходимость во всех остальных методах исследования организма давно отпала бы
Однако сторонники традиционной медицины утверждают, что это – шарлатанство
Вот материал, написанный на основе статьи Алексея Водовозова, врача-токсиколога, блогера, опубликованной в журнале «Пупулярная механика» в 2010 году

Всем известно, что любой сбой в организме непременно отражается на состоянии крови, именно поэтому на ее исследовании основано множество методов диагноостики
Автор «разоблачительной» статьи о гемосканировании утверждает, что этим активно пользуются любители легкой наживы и с помощью дорогого оборудования обманывают простодушных людей

Предлагаю вместе разобраться в том, что же в гемосканировании правда, а что – вымысел
Когда появился первый микроскоп, медики чуть ли не в первую очередь начали изучать с его помощью кровь
Этот вид исследования актуален и в наши дни, вот только приборы стали гораздо мощнее
Раньше, чтобы со всех сторон изучить объект под микроскопом, его нужно было предварительно обработать красителями и фиксаторами
Таким образом, исследователи рассматривали уже мертвые клетки

В 30-х годах прошлого столетия нидерландский физик Фриц Цернике разработал определенную систему колец в конденсаторе и объективе микроскопа, которые позволяли получить более четкое изображение предмета, помещенного под стекло с помощью источника света
За свое открытие Цернике был удостоен Нобелевской премии, а сам метод был назван фазово-контрастной микроскопией и совершил настоящий прорыв в данной области науки
Так было положено начало прижизненной микроскопии

Наш век – время цифровых технологий, а потому современные микроскопы могут работать как в фазовом контрасте, так и на темном поле, делая объект изучения очень светлым
Кроме того, объекты можно исследовать и в поляризованном свете, с помощью которого видна их структура, выходящая за рамки обычного оптического разрешения
Вот тут-то, по словам Водовозова, и кроется подвох – эти мощные инструменты попали в руки не только специалистов, но и мошенников

Стоит сразу оговориться, что биологически активные добавки, судя по всему, автор статьи также не признает
Следом Александр Водовозов перечисляет все положительные стороны гемосканирования

Оно основано на реально существующем физическом явлении, доказанном Фрицем Цернике, которые получил за свое открытие Нобелевскую премию
Оно проводится на специализированном сертифицированном дорогостоящем медицинском оборудовании стоимостью не менее 3000-4000$
Оно полностью законно, так как имеет соответствующую лицензию как метод лабораторной диагностики, с помощью которого осуществляется и темнопольное и фазово-контрастное микроскопирование
Этот метод диагностики используется в медицине, а, значит, можно найти настоящих специалистов по гемосканированию, которые имеют соответствующие дипломы и сертификаты
С помощью данного вида обследования можно выявить целый ряд признаков заболеваний – увидеть изменившуюся под воздействием серповидноклеточной анемии форму эритроцитов
В эритроцитах, рассматриваемых таким образом, прослеживаются внутриеклеточные паразиты – бартонеллы
А еще теоретически с помощью гемосканирования можно обнаружить яйца гельминтов

Казалось бы, действительно эффективный метод диагностики
В чем же автор «разоблачительной» статьи видит подвох?

Он выступает против псевдоспециалистов, которые берутся интерпретировать сложные явления, в которых не разбираются
Водовозов говорит о том, что даже грамотному врачу подчас трудно разобраться с «диагнозами», которые наставляют псевдоспециалисты
В гемосканировании хорошо работает эффект сопричастности пациента, то есть, он своими глазами может видеть собственные эритроциты, а, в это время, «специалист» активно наговаривает ему текст про состояние его крови

Масса новой информации сбивает человека с толку
Так, например, ему сообщают, что плазма его крови заражена бактериями и грибками
Он в ужасе, ведь он-то не знает, что даже такой мощный микроскоп не позволяет различить их между собой

С этой целью дипломированные врачи-микробиологи сеют возбудителей различных заболеваний в особые питательные среды, а затем только устанавливают, что это за микроорганизм и каких антибиотиков он боится
Чтобы получить подобные сведения с помощью микроскопа, лаборантам все равно требуются дополнительные реактивы – красители, которые крепятся к бактериям и, таким образом, выявляют их

Закисление крови, якобы видимое на гемосканировании, это тоже, по Водовозову, из области фантастики
Смешение уровня pH крови (ацидоз) частый спутник целого ряда заболеваний, но, чтобы выявить его, необходим контакт изучаемой жидкости и специального датчика
С иронией автор пишет о зашлакованности, обезвоживании, дисбактериозе, ферментопатии, интоксикации, которые якобы выявляет гемосканирование

И уж, конечно, он с удовольствием высмеивает лечение пациентов биологически активными добавками …

Родителям особенных детей, которые восстанавливают своих чад с помощью биомеда, это смешным вряд ли покажется, так как они уже убедились в эффективности такого подхода
Однако посыл статьи Водовозова очень важен – если вы хотите подвергнуть своего ребенка гемосканированию, важно найти по-настоящему хорошего специалиста, а не ловкого сетевика, продвигающего свою продукцию в массы

Уровень ее pH
Уровень водно-солевого обмена
Токсины пищевые (мутагенные и тератогенные)
Результат воздействия свободных радикалов и токсинов на эритроциты
Паразитов и их яйца
Бактерии
Грибы
Цисты
Качественный и количественный уровень иммунных клеток

Если «специалист» рассказывает вам обо всем этом, глядя на каплю крови в микроскоп, знайте, перед вами мошенник или просто профан!
Вы и доказать не сможете, что вас обманули, а потому просто потратите деньги

Поэтому перед диагностикой обязательно подробно расспросите человека, который будет ее проводить, какая информация о крови будет вам доступна в результате исследования
Водовозов прямо говорит о том, что данный метод диагностики не является достоверным в полной мере, так как полностью зависит от человеческого фактора, то есть, от квалификации и физического состояния специалиста

А разве есть исследования, которые от этого не зависят?! )
С помощью гемосканирования можно выявить перницитозную и серповидноклеточную анемию, а также целый ряд других тяжелых заболеваний
Но автор утверждает, что встречаются они довольно редко, а, значит, этот метод диагностики, по сути, не имеет смысла?

Люди, проводящие гемосканирование, нередко утверждают, что с помощью этого вида диагностики можно разглядеть глистов и обнаруживают их практически у каждого первого своего пациента
Автор же указанной статьи пишет о том, что в крови, на самом деле, можно выявить личинки и яйца некоторых разновидностей гельминтов
Например, шистосомы проходят период распространения по телу посредством кровотока, однако это не отражается в периферической крови, так как диаметр капилляров пальца слишком мал – яйца просто не поместятся туда!
Средний размер яйца шистосома – от 140х50 до 240х85 мкм, а эритроцита – 7,5 мкм

Так что, сами анализируйте то, что видите на экране и сравнивайте с тем, что говорит вам «специалист»
Кристаллы (например, соли мочевой или ортофосфорной кислоты), на самом деле, бесцветные
Автор утверждает, что невозможно добиться такой концентрации кислоты в организме, при которой она будет кристаллизоваться
Если кристаллы фосфорной кислоты и образуются в организме, то они представляют собой фосфат кальция, из которого состоят камни в желчном пузыре и в почках

Забавно, но часто под видом кристаллов указанных кислот мошенники выдают обычные грязные разводы на объективе прибора
Внутриклеточные паразиты, о которых часто можно услышать от псевдоспециалистов по гемосканированию, также не видны в микроскоп так явно, как нам хотят представить
Если вы слышите диагноз типа «инфицирование эритроцитов бактериями», задумайтесь о компетентности «специалиста», проводящего диагностику
Только два паразита, по утверждению Водовозова, связаны с эритроцитами – это бартонелла и 4 вида плазмодиев, которые возбуждают малярию
Однако это вовсе не бактерии, да и размеры у них таковы, что в один эритроцит, зараженный малярией, помещаются, например, лишь 10-20 мерозиотов (предшественников плазмодиев)

То, что видит на экране пациент и то, что мошенники выдают за бактерии, на самом деле, игра света в объемных эритроцитах – периферия клеток темная, а центр светлый
Кроме того, в образец крови во время исследования могут попадать различные инородные тела, скажем, части тел насекомых
И их ловкие шарлатаны могут выдавать за отклонения от нормы в составе крови

Свою статью Александр Водовозов заканчивает цитатой, взятой из письма Центрального аппарата Росздравнадзора, которая гласит, что гемосканирование не была представлена в качестве новой медицинской технологии на рассмотрение и получение разрешения для применения, а потому официально не разрешена для использования в медпрактике

Получается, гемосканирование для особенных детей может быть полезным, но лишь в том случае если их родители найдут по-настоящему грамотного диагноста и смогут самостоятельно анализировать хотя бы часть того, что будет происходить на экране монитора

Врачи натуропаты любят этот анализ за показательность и уникальные параметры

На форумах для детей с аутизмом также есть рекомендации сделать этот анализ
http://www.autismnet.ru/forum/viewtopic.php?f=30&t=429&p=7152&hilit=%D0%B3%D0%B5%D0%BC%D0%BE%D1%81%D0%BA%D0%B0%D0%BD%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5#p7152

Если у Вас есть отзывы по гемосканированию, пожалуйста, напишите в комментариях
Ваш опыт важен для нас
Попадались ли Вам грамотные доктора?

План семинаров ЗДЕСЬ
Продукты пчеловодства Тенториум восстанавливают каждую клеточку организма естественным путем по принципам биомедицинской коррекции организма
Они насыщают организм необходимыми ферментами, витаминами и микроэлементами
Также есть продукция, с помощью которой токсины после медикаментозного лечения без проблем выведутся из организма

Отказ от ответственности
Информация, представленная в этой статье, предназначена только для информирования читателя
Она не может быть заменой для консультации профессиональным медицинским работником

источник

Подсчёт эритроцитов в камере Горяева. Увеличение: 100×.

Статья на конкурс «био/мол/текст»: Повышенный уровень лейкоцитов, бактериальная инфекция, картофель содержит крахмал, насекомые переносят заболевания — эти и другие похожие высказывания приходится слышать отовсюду. Каждый день с экранов телевизоров, из уст знакомых, с полос газет и журналов нам в мозг поступает одна и та же информация. Информация, которая, как может показаться, является уделом лишь специалистов — медиков и биологов. Ведь именно они касаются этих вопросов в своей повседневной жизни. Простому же человеку достаются лишь только выводы из тех или иных исследований, сухие слова, не обладающие наглядностью. В этой статье я постараюсь рассказать просто о сложном. О том, как каждый может приблизить к себе неуловимый, на первый взгляд, мир клеток и микроорганизмов.

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Своя работа».

Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.

Вот уже два года, как я наблюдаю за этим миром у себя дома, и год, как делаю фотоснимки. За это время я успел увидеть собственными глазами, какие бывают клетки крови, что опадает с крыльев бабочек и молей, как бьётся сердце у улитки. Конечно, многое можно было бы почерпнуть из учебников, видеолекций и с тематических веб-сайтов. Единственное, что осталось бы не почерпнутым — это ощущение присутствия и близости к тому, чего не видно невооружённым глазом. То, что прочитано в книге или увидено в телепередаче, скорее всего, сотрется из памяти в весьма сжатые сроки. Что увидено лично в объектив микроскопа — останется с тобой навсегда. И останется не столько сам образ увиденного, сколько понимание, что мир устроен именно так, а не иначе. Что это не просто слова из книжки, а личный опыт. Опыт, который в наше время доступен каждому.

Театр начинается с вешалки, а исследование — с покупки оборудования. В нашем случае это будет микроскоп, ибо в лупу много не разглядишь. Из основных характеристик микроскопа «для домашних нужд» стоит выделить, конечно же, набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива. Не всякий биологический образец хорош для исследования на больших увеличениях. Связано это с тем, что большее увеличение оптической системы предполагает меньшую глубину резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения во всем диапазоне увеличения: 10–20×, 40–60×, 100–200×, 400–600×, 900–1000×. Иногда бывает оправдано увеличение 1500×, достигающееся при покупке окуляра 15× и объектива 100×. Всё, что увеличивает сильнее, разрешающей способности заметно не прибавит, так как на увеличениях около 2000–2500× уже близок так называемый «оптический предел», обусловленный дифракционными явлениями.

Следующим немаловажным моментом является тип насадки. Обычно выделяют монокулярную, бинокулярную и тринокулярную разновидности. Принцип классификации основывается на том, «сколькими глазами» вы хотите смотреть на объект. В случае монокулярной системы вам придётся щуриться, постоянно меняя глаза от усталости при длительном наблюдении. Здесь вам на помощь придёт бинокулярная насадка, в которую, как и следует из её названия, можно глядеть обоими глазами. В целом, это более благоприятно скажется на самочувствии ваших глаз. Не следует путать бинокуляр со стереомикроскопом. Последний позволяет добиться объёмного восприятия наблюдаемого объекта за счёт наличия двух объективов, в то время как бинокулярные микроскопы просто подают на оба глаза одно и то же изображение. Для фото- и видеосъёмки микрообъектов понадобится «третий глаз», а именно насадка для установки камеры. Многие производители выпускают специальные камеры для своих моделей микроскопов, хотя можно использовать и обычный фотоаппарат (правда, при этом придётся купить переходник).

Читайте также:  Chol2 в анализе крови норма

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры соответствующих объективов. Канули те времена, когда препарат исследовали в отражённом от зеркала свете. Сейчас микроскопы представляют собой комплексные оптико-механо-электрические приборы, в которых всецело используются достижения научно-технического прогресса. В современных устройствах имеется своя лампочка, свет от которой распространяется через специальное устройство — конденсор, — которое и освещает препарат. В зависимости от типа конденсора можно выделить различные способы наблюдения, самыми популярными из которых являются методы светлого и тёмного поля. Первый метод, знакомый многим ещё со школы, предполагает, что препарат освещается равномерно снизу. При этом в тех местах, где препарат оптически прозрачен, свет распространяется от конденсора в объектив, а в непрозрачной среде свет поглощается, приобретает окраску и рассеивается. Поэтому на белом фоне получается тёмное изображение — отсюда и название метода.

С темнопольным конденсором всё иначе. Он устроен так, что лучи света, выходящие из него, направлены в разные стороны, кроме непосредственно отверстия объектива. Поэтому они проходят сквозь оптически прозрачную среду, не попадая в поле зрения наблюдателя. С другой стороны, лучи, попавшие на непрозрачный объект, рассеиваются на нём во все стороны, в том числе и в направлении объектива. Поэтому в итоге на тёмном фоне будет виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных объектов, которые на светлом фоне не являются контрастными. По умолчанию большинство микроскопов являются светлопольными. Поэтому, если вы планируете расширить набор методов наблюдения, то стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсоров, устройств фазового контраста, поляризаторов и т.п.

Как известно, оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения — аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы. Они используются при профессиональных исследованиях и имеют адекватную цену. Объективы с большим увеличением (например, 100×) имеют числовую апертуру больше 1, что предполагает использование масла при наблюдении — так называемая иммерсия. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионном масле. Его показатель преломления обязательно должен соответствовать вашему конкретному объективу.

Конечно, это не весь список параметров, которые следует учитывать при покупке микроскопа. Иногда бывает важно обратить внимание на устройство и расположение предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который светит ярче и греется меньше. Также микроскопы могут иметь индивидуальные особенности. Но основное, что стоило бы сказать об их устройстве, пожалуй, сказано. Каждая дополнительная опция — это добавка к цене, поэтому выбор модели и комплектации — это удел конечного потребителя.

В последнее время наметилась тенденция покупки микроскопов для детей. Такие устройства обычно являются монокулярами с небольшим набором объективов и скромными параметрами, стоят недорого и могут послужить хорошей отправной точкой не только для непосредственно наблюдений, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже можно будет купить более серьёзное устройство на основании выводов, сделанных при работе с «бюджетной» моделью.

Любительское наблюдение не предполагает исключительных навыков ни в работе с микроскопом, ни в подготовке препаратов. Конечно, можно купить далеко не дешёвые наборы уже готовых препаратов, но тогда не таким ярким будет ощущение вашего личного присутствия в исследовании, да и готовые препараты рано или поздно наскучат. Поэтому, купив микроскоп, стоит задуматься о реальных объектах для наблюдения. Кроме того, вам понадобятся хоть и специальные, но доступные средства для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект является достаточно тонким. Даже не каждая кожура с ягоды или фрукта сама по себе обладает необходимой толщиной, поэтому в микроскопии исследуют срезы. В домашних условиях достаточно адекватные срезы можно делать обычными лезвиями для бритья. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, что во многом повысит дифференцируемость объектов препарата. В идеале стоит работать с моноклеточным слоем ткани, ибо несколько слоёв клеток, наложенных друг на друга, создают нечёткое и сумбурное изображение.

Исследуемый препарат помещается на стекло предметное и, в случае необходимости, накрывается стеклом покровным. Поэтому, если в комплекте к микроскопу стёкла не прилагаются, их следует купить отдельно. Сделать это можно в ближайшем магазине медицинской техники. Однако не каждый препарат хорошо прилегает к стеклу, поэтому применяют методы фиксации. Основными являются фиксация огнём и спиртом. Первый метод требует определённого навыка, так как можно попросту «спалить» препарат. Второй способ зачастую более оправдан. Чистый спирт достать не всегда возможно, поэтому в аптеке в качестве заменителя можно приобрести антисептик, который, по сути, является спиртом с примесями. Там же стоит купить йод и зелёнку. Эти привычные для нас средства дезинфекции на деле оказываются ещё и хорошими красителями для препаратов. Ведь не всякий препарат открывает свою сущность при первом взгляде. Иногда ему нужно «помочь», подкрасив его форменные элементы: ядро, цитоплазму, органеллы.

Для взятия образцов крови следует приобрести скарификаторы, пипетки и вату. Всё это есть в продаже в медицинских магазинах и аптеках. Кроме того, для сбора объектов из дикой природы следует запастись маленькими пакетиками и баночками. Брать с собой баночку для набора воды из ближайшего водоёма при выезде на природу должно стать у вас хорошей привычкой.

Микроскоп приобретён, инструменты закуплены — пора начинать. И начать следует с самого доступного. Что может быть доступнее кожуры репчатого лука (рис. 1 и 2)? Являясь тонкой сама по себе, кожура лука, будучи подкрашенной йодом, обнаруживает в своём строении чётко дифференцируемые ядра. Этот опыт, хорошо знакомый со школы, пожалуй, и стоит провести первым. Саму кожуру лука нужно залить йодом и оставить окрашиваться на 10–15 минут, после чего нужно промыть её под струёй воды.

Кроме того, йод можно использовать для окраски картофеля (рис. 3). Не стоит забывать, что срез необходимо делать как можно более тонким. Буквально 5–10 минут пребывания среза картофеля в йоде проявят пласты крахмала, которые окрасятся в синий цвет. Йод является достаточно универсальным красителем. Им можно окрашивать широкий спектр препаратов.

Рисунок 1. Кожица лука (увеличение: 1000×). Окраска йодом. На фотографии дифференцируется ядро в клетке.

Рисунок 2. Кожица лука (увеличение: 1000×). Окраска Азур-Эозином. На фотографии в ядре дифференцируется ядрышко.

Рисунок 3. Зерна крахмала в картофеле (увеличение: 100×). Окраска йодом.

На балконах жилых домов часто скапливается большое количество трупов летающих насекомых. Не торопитесь от них избавляться: они могут послужить ценным материалом для исследования. Как видно из фотографий, вы обнаружите, что крылья насекомых волосатые (рис. 4–6). Насекомым это необходимо для того, чтобы крылья не намокали . В силу большого поверхностного натяжения, капли воды не могут «провалиться» сквозь волоски и коснуться крыла.

Это явление называется гидрофобностью. Подробно мы о нем говорили в статье «Физическая водобоязнь». — Ред.

Рисунок 4. Крыло божьей коровки (увеличение: 400×).

Рисунок 5. Крыло бибионида (увеличение: 400×).

Рисунок 6. Крыло бабочки боярышницы (увеличение: 100×).

Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На фотографиях отчётливо видно, что этой пылью являются чешуйки с их крыльев (рис. 7). Они имеют разную форму и достаточно легки на отрыв.

Кроме того, можно поверхностно изучить строение конечностей членистоногих (рис. 8), рассмотреть хитиновые плёнки — например, на спине таракана (рис. 9). При должном увеличении можно убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Рисунок 7. Чешуйки с крыльев моли (увеличение: 400×).

Рисунок 8. Конечность паука (увеличение: 100×).

Рисунок 9. Плёнка на спине таракана (увеличение: 400×).

Следующее, что стоило бы понаблюдать — это кожура ягод и фруктов (рис. 10 и 11). Не все фрукты и ягоды обладают приемлемой для наблюдения в микроскоп кожурой. Либо её клеточное строение может быть не дифференцируемым, либо толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем вы получите хороший препарат. Вам придётся перебрать разные сорта винограда — например, для того, чтобы найти тот, у которого красящие вещества в кожуре имели бы «приятную для глаза» форму, или сделать несколько срезов кожицы сливы, пока не добьётесь моноклеточного слоя. В любом случае, вознаграждение за проделанную работу будет достойным.

Рисунок 10. Кожура чёрного винограда (увеличение: 1000×).

Рисунок 11. Кожура сливы (увеличение: 1000×).

Рисунок 12. Лист клевера (увеличение: 100×). Некоторые клетки содержат тёмнокрасный пигмент.

Достаточно доступным для исследования объектом является зелень: трава, водоросли, листья (рис. 12 и 13). Но, несмотря на повсеместную распространённость, выбрать и приготовить хороший образец бывает не так-то просто.

Самым интересным в зелени являются, пожалуй, хлоропласты (рис. 14 и 15). Поэтому срез должен быть исключительно тонким. Нередко приемлемой толщиной обладают зелёные водоросли, встречающиеся в любых открытых водоёмах.

Рисунок 13. Лист земляники (увеличение: 40×).

Рисунок 14. Хлоропласты в клетках травы (увеличение: 1000×).

Рисунок 15. Хлоропласты в клетках водоросли (увеличение: 1000×).

Там же вы встретите и плавучие водоросли и других водных микроорганизмов (рис. 16). Вам также может посчастливиться встретить малька улитки или другого животного, живущего в водоёме (рис. 17 и 18). Маленький детёныш улитки, будучи достаточно оптически прозрачным, позволяет разглядеть у себя биение сердца (видео 1).

Рисунок 16. Плавающая водоросль со жгутиком (увеличение: 400×).

Рисунок 17. Детёныш улитки (увеличение: 40×).

Рисунок 18. Мазок крови. Окраска Азур-Эозином по Романовскому (увеличение: 1000×). На фотографии эозинофил на фоне эритроцитов.

Видео 1. Биение сердца улитки (увеличение оптического микроскопа 100×).

После исследования простых и доступных препаратов естественным желанием является усложнение техник наблюдения и расширение класса изучаемых объектов. Для этого, во-первых, понадобится литература по специальным методам исследования, а, во-вторых, специальные средства. Эти средства, хотя и являются своими для каждого типа объектов, всё-таки обладают некоторой общностью и универсальностью. Например, всеобще известный метод окраски по Граму, когда разные виды бактерий после окраски дифференцируются по цветам, может быть применён и при окраске других, не бактериальных, клеток. Близким к нему по сути является и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из таких красящих веществ, как азур и эозин. Все красители можно купить в специализированных медико-биологических магазинах, либо заказать в интернете. Если же по каким-то причинам вы не можете достать краситель для крови, можно попросить лаборанта, делающего вам анализ крови в больнице, приложить к анализу стёклышко с окрашенным мазком вашей крови.

Продолжая тему исследования крови, нельзя не упомянуть камеру Горяева — устройство для подсчёта форменных элементов крови. Будучи важным инструментом для оценки количества эритроцитов в крови ещё в те времена, когда не было устройств для автоматического анализа её состава, камера Горяева также позволяет измерять размеры объектов благодаря нанесённой на неё разметке с известными размерами делений. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

В данной статье я постарался рассмотреть основные моменты, связанные с выбором микроскопа, подручных средств и основные классы объектов для наблюдения, которые нетрудно встретить в быту и на природе. Как уже было сказано, специальные средства наблюдения предполагают наличие хотя бы начальных навыков работы с микроскопом, поэтому их обзор выходит за рамки данной статьи. Как видно из фотографий, микроскопия может стать приятным хобби, а может быть, для кого-то даже и искусством.

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить собственные деньги. Из развлекательных соображений это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Но находятся и те, кто отводит свой взор от экранов и направляет его либо далеко в космос, приобретая телескоп, либо, смотря в окуляр микроскопа, проникают взглядом глубоко внутрь. Внутрь той природы, частью которой мы являемся.

источник